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INTERACTION OF SHOCK WAVES IN AN ELASTOPLASTIC MEDIUM 

WITH HARDENING 

V. A. Baskakov UDC 539.3 

A study was made of the laws and the character of the deformation of an elastoplastic 
material after the passage of shock waves brought aboutby rather intense sources of perturba- 
tions. At a sufficiently great distance from the source, the fronts of the waves in the 
vicinity of the point of their interaction can be regarded as flat. The model of the medium 
provides for taking account of two hardening mechanisms [i]: kinematic and isotroplc. Using 
the apparatus of the theory of fractures [2] and the method of [3-5], at first an elastic, 
and then an elastoplastic self-slmilar solution of the problem is constructed. The principal 
difficulty here consists in seeking the previously unknown lines separating the regions of 
elastic and plastic deformation of the material, at which the boundary conditions are assigned 
for the solution of a quasilinear system of differential equations in dissipative regions. A 
study is made of the effect of the hardening parameter on the qualitative side of the inter- 
action of the waves. The basic relations were investigated using a digital computer; con- 
crete numerical results were obtained. The solutions presented are a natural development of 
[5-7]. 

Let two flat shock waves in the form of steps E~ and E2 be propagated into an undeformed 
elastoplastic medium with the velocity G at an angle of 0 < 2u < ~ (Fig. i). Within the 
framework of the theory of small alastoplastic deformations it is postulated that the total 
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deformation eli is made up of elastic eij and plastic e~j parts, and is expressed in terms 
of the displacements u i by the Cauchy formulas (i, J = l~ 2, 3). The x,, x2, and x, axes are 
orthogonal; all the sought quantities are assumed to be independent of x3. We seek the solu- 
tion of the problem in a movable system of coordinates (x = x, -- St, y = x2), connected with 
the point of interaction of the waves (S = G(sin ~)-*, t is the time). In what follows the 
elastic and neutral regions appearing are called nondissipative, as opposed to plastic regions, 
in which there is dissipation of energy. In the nondissipative regions, the changes in the 
stresses and deformations are determined by elastic dependences, while in the plastic regions, 
the condition of plasticity and the associated law of plastic flow must be brought in. 

In the process of the interaction of the waves it may be found that the nondissipative 
region occupies the whole space behind the starting waves. In the system of coordinates x, 
y, the field of the stresses, velocities, and deformations will then be stationary behind 
the fronts of these waves, and the solution can be assumed to be self-similar, i.e., it can 
be postulated that the components of the tensor of the stresses oij, the deformations eij, 
and the velocities of the displacement v i depend only on ~ ~ cot ~ = xy -I, where ~ is an 
angle, reckoned from the positive direction of the x axis counterclockwise (thus, ~+ = +u 
for the wave E,, and ~_ =--u for the wave E~ (see Fig. i). 

Using the linear Hooke's law, the Cauchy formulas, and setting u, = yu(~), u2 = yv(~), 
us = yw(~), we obtain the following system of the equations of motion: 

(k + 2~ + ~ - -  pS~)u '' - -  (~ + ~)~v" = O, 

- - ~  + ~)~u" + ((~ + 2~)~' + ~ - -  pS~)v '' = O, 

(~(l + ~)  - -  p s g w "  = O, 

where p is the density of the medium; X, ~ are Lam~ parameters; the primes denote derivatives 
with respect to ~. 

The solution of this system is everywhere trivial: 

u = a~ -b b, v = c~ --b d, w = e~ + l ,  

where the determinant is nonzero (a, b,c, d, e, f are constants), h nontrlvial solution of 
the system exists with the condition 

(pG, - ~),(p~,-(~ + 2~)) = 0, 

where G is a new variable, determined by the relation G2(I + ~') = S 2. Thus, in the body 
there can be propagated both vortexless and shear-type shock waves, respectively, with the 
velocities G~ = (l + 2~)p-* G~ = ~p-* 

Let us consider the case of the interaction of two vortexless shock waves. In this case, 
a state of plane deformation is established in the space (us = 0); therefore, out of the three 
equations of motion, there remains only the first two. 

i. Construction of Elastic Solution. The determinant of the system of equations of 
motion is equal to zero with the following values of the angle ~: ~,2 = • + Z~, determining 
the position of the fronts of longitudinal waves, propagating with the velocity Ol, and ~,, 
• + Z~ = • sin (~/(l+ 2U)) I/~ sin u + ~, determining the position of the fronts of trans- 
verse waves, propagating with the velocity Gs. From the condition of the problem posed it 
follows that, if these waves exist, then, Z can be an odd whole number. For definiteness we 
can set Z = i. The position of the vortexless waves El, E~, Zs, Z~ are determined by the 
relationships ~,,s = cot u, ~s,~ = --cot u, and the shear waves ZsE~, by the relationships 
~s,, = cot(~ • 8) = • 8. However, it can be rigorously proved that, in the present state- 
ment, as a result of the interaction of vortexless shock waves, surfaces of a strong discon- 
tinuity of Es, Ee are now formed. 
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In actuality, we postulate the presence of the surfaces E5 and E~, we find the stress-- 
deformation state of the medium in the proximity of the point of interaction of the waves. 
In what Follows, the zone between E~ and E4 will be noted by the number i, Ea, Ea by the 
number 2, ZaE5 by the number 3, E4Z6 by the number 4, EsE, by thenumber 5. Let theintensi- 
ties ofthestartingwavesE~and Z=be equal,respectively, to71 and72. From theconditions ofan 
Adamar set for the normal component of the rate of displacements in zones 1 and 2, we have 
V m =-GxYm (m denotes the number of the zone). Then, vt (m) = V m sin u, va (m) = (--l)mVm cos 

(here and in what follows summation is not carried out with respect to m). Using the fact 
that, in a movable system of coordinates, the rates of displacements are expressed by the 
formulas v i =--SUi,x, there can be deformations, and then, in accordance with Hooke's law, 
also stresses in these zones: 

e ~  ) = ~m sin~=, e ~  ) = ( - -  l)mym sin = cos a ,  e ~  ) = ?m c o s ' = ,  

O ~  ) ?m (L + 2~ s in  ~ a ) ,  0 (a) = ss = 7m(~  -~ 29costa), (1.1) 
O(m) __ 1~ - -  ( - -  l ) m ? a ~  s in  2 a ,  ~ )  = E?m (m = 1, 2). 

Setting ux (m) = amX + bray , ua (m) = Cm x + dmY , we obtain the coefficients a m =~m sin a, 
Cm = mm sin u, where ~m = 7m sin u, ~m = (--l)mTm cos u. From the condition of the continuity 
of the displacements at the surface Ex and Ea, we obtain b m = (--l)m~ m cos ~, d m = (--l)m~ m cos 
u. Thus, in zones 1 and 2, the displacements will be known. 

Assuming further that for m = 3, 4, 5 the form of the dependence of the coefficients am, 
bm, ~m, ~m is the same as for m = i, 2, from the condition of continuity of the displacements 
at the surfaces Ez and E~, we obtain bs = (2~a  -- ~s) cos u, da= (2~a -- ~z) cos a, b~ = (~ -- 
2~x) cos u, d~ = (~a -- 2~x) cos u. From the condition of continuity of the displacements 
at Es and Ee, for the coefficients bs, d5 we obtain two expressions, equating which we have 
the .relationships 

2u~ c tg  f i =  (• -{- • (c tg  fi - -  c tg  a )  + 2(• -[- u2) c tg  a ;  ( 1 . 2 )  

2~,  ctg ~ = ( ~  + ~ )  (ctg ~ -- ctg ~) -4- 2 ( ~  § ~z) ctg a. (1.3) 

It is well known that, in vortexless shock waves, the tangential component of the dis- 
placement rate v T is continuous, and, in equivolumetric waves, the normal component v n. This 
corresponds to a situation in which, at the first of them [uT, n] = 0 and, at the second, 
[Un,n] = 0, where the square brackets denote a discontinuity of the given quantities. If now 
we apply these relationship to the waves Es, Ea, En, E,, previously differentiating the ex- 
pressions uT = uiTi, u n = uin i along a normal, after transformations we obtain the following 
equations: 

7~ s in  2 ~  = us cos ~ q- ~s s in  a ,  ?~ s in  2~  = • cos a 

- - ~ a  s in  a ,  ( 1 . 4 )  

(us - -  u~) s in  ~ = (~s  - -  ~ )  cos ~, (•215 s in  ~ = ( ~ - - ~  cos ~, 

which, together with (1.2), (1.3), form a closed system of linear algebraic equations for ~a, 
~, Ms, ~z, me, us, and have the solution 

• 2 1 5  s i n a ,  r  r 4 =  o) 5 = ( % % - - 7 1 )  c o s a .  (1.5) 

From (1.5) specifically, it follows that the solution in zones 3, 4, 5 is identical and is a 
simple superposition of the solutions in zones 1 and 2. This means that the surfaces Zs and 
E~ are not present in the packet of waves. In actuality, calculating the components of the 
vectors of the displacements, and of the tensors of the deformations and the stresses in 
zones 3, 4, and 5, we have (m = 3, 4, 5) 

u(1 '~) = (?~ -}- 72) x s in  2 a -5 (72 - -  Yx) Y s in  a cos a ,  

u~ m) = (72 - -  71) x s in  a cos o~ + (71 + 7~) Y cos2 a ,  

e(l"~ ) = (?1 -4- ?2) s in  ~ a ;  e~'~ ) = (?~ + Y2) eos~ ~ ,  

e ( ~  ) = (~2 - -  ~1)  s in  r cos a ;  o~'~ ) ---- L (371 -4- 72), 

o(1'~ ) = (?1 + 7~)(L q- 2~ s in  2 a ) ,  _(m) ~'~2 = (71 -4- 7~)(L + 2~ cos" ct), 
if(m) 1~ = IX (?~ - -  71) s in  2=.  

( l .6 )  

From (1.6) it can be seen that the sought quantities do not depend on m. 
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Thus, the elastic solution obtained, (i.i), (1.6), completes the proof of our asser- 
tion. In what follows, the zones 3, 4, 5 will be denoted as a single third zone. 

2. Construction of Elastoplastic Solutions. Case of an Ideal Elastoplastlc Material. 
With a determination of this solution, we posthlate that, in the body, there exists also a 
state of plane deformation, and that the material is plastically in compressible. However, 
in what follows, for brevity in writing we shall continue to use the tensor notation, having 
in view here only quantities not equal to zero. Let 7m be such that, in zones 1 and 2, the 
value of I(m), characterizing the intensity of the stresses, will be equal to l(m) = 0.5- 

s(m)s(m) = zak = (m = I, 2; are the components of the deviator of the stresses; k is the ij ij m slj 
yield point with pure shear; 0 < z m ~i). Then, in these zones the solution obtained in Sec. 
1 is valid. Under these circumstances, in the third zone, dissipative region can appear only 
in the case where the waves E, and E~ become neutral, and the boundaries of these regions are 
surfaces of a weak discontinuity ~, and ~= [4-5] (see Fig. i). In addition to this, the in- 
equality I(,) ~ k = must be satisfied; in the contrary case, solution (1.6) holds. Using 
(i.i) and (1.6) to calculate the intensities in all three zones, we have 

4 
I(~) = " T  ~ ? i  = z~k =, I(s) = I o )  + ~2) + (2 - -  3 sin 2 2a )  ]/ /-~)I(~).  ( 2 .  l )  

The above inequality now assumes the form 

( z z - } - % ) ~ - - 3 z ~ s i n ~ 2 ~ > i .  (2.2) 

Let (2.2) be satisfied. It is obvious that the plastic fan in the third zone must lie be- 
tween two neutral regions of this zone. The position of the loading waves r = v - a, is 
determined from the relation [6] 

czs in  ~--Gzsin ~z = O, (2.3) 

where c~ is the velocity of its propagation, subject to determination. 

The continuous solution in regions deformed plastically in the variables xi, t with the 
Mises plasticity condition, is described by the equations 

-- (2.4) 

= p = = o ,  

= (e~ePj)L/" >.0; the dot denotes the derivative with respect to time; dij is the where 
Kronecker symbol. Writing (2.4) at the discontinuities, and using the fact that, at these 
surfaces I i (i = i, 2, 3, 4), the plastic deformations are continuous, from geometric and 
kinematic conditions of a set of the first order [2], for the velocity of the wave ~, we 
can obtain 

2 k " d  = A --,- (.,4. ~ - -  4k~G~ [(k"a-; - C;~Bo ~) - -  G~B~]) ' '~, ( 2 . 5 )  

where A = k=G~ --GIBe, = = = a = = = _ = = = Go = GI + G=, Bo.=.b** + be=, G, - G, -- Gi, B = (bI,92 -- b=29,) 2, 
(=),, • ~(,), b , l  = S i , a ) v =  + S ~ a = ) v a ,  h a ,  = S , ,  ~1 ~ o , ,  ~ a ,  9z  = s i n  u , ,  v =  = c o s  u l .  As  f o l l o w s  f r o m  

(2.5), the velocity of a weak loading wave depends ~o a considerable degree on the stressed 
state of the medium ahead of the wave, which is a consequence of the nonlinearity of the 
starting system of equations. Substituting (2.5) into (2.3), we obtain an equation for 
determining the position of the loading wave, previously determining the stresses ahead of 
the wave. For this purpose, we use the relationships 

_ 9,,  (m),~(m)~ ( m  = 3, 4) ,  ( 2 . 6 )  r [~.)~] n~/7z) = r G1 [(IU] = g'm ()~SiJ "4- ..,v.ni ,,~ ] 

which must be satisfied at the surfaces It, E, (here Sm are quantities characterizing the 
intensities of these waves; n i are the components of the vector of the unit normal to the 
corresponding wave). In distinction from the elastic solution, the values of ~m = -G*Ym are 
determined here from the condition of creep I(,) = k =. Here it can be postulated that ~ij, 
ePij , vi, depend only on ~ (or on #9 = arc cot ~). Then, the system of equations (2.4) goes 
over into a system of ordinary differential equations. Its trivial solution correspond to a 
neutral stressed state of the medium. Therefore, the stresses and rates of displacement 

P( ) = ~ ( ' )  
found from (2.6), as well as the values ei~a = O are the boundary conditions for ob- 

taining a nontrlvial solution of the above system of equations. They are imposed on the 
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surfaces ~ = ~ -- u, (~a = ~ + an). We pass on ~o their determination. From the second re- 
lationship of (2.6), satisfied at the surface Z, and Z,, and the condition of plasticity, we 
obtaln, respectively 

3 G1 2 4 Z 2 '3,4-'~ "T'-~'(D'~.I ' - i - ( D 2 , 1 - - T ( 2 , 1 - - 1 )  k2)1/2) �9 (2 .7 )  

Here 

D1 2=S(l~:)(sin2~ I ~.c(1.~)[,..,~2 1 ~, c(1,2)o:. 2a - -  1 S(1,2) --'TJT,-,2~. ~,~,o a- -Tj- - r~ ,12 ~ . .  T 83 , 

(~ ~) 
the values of the stresses Sii' are calculated from (i.i), where y~ and Ya are determined 
now from the first relationship of (2.1). The second root of (2.7) is extraneous, since, 
e.g., with z~ = za = i, it reverts to zero, which leads to the absence of the surfaces 7a, 
E~. Thus, the relationships (2.3), (2.5)-(2.7) completely determine the wave ul and the 
boundary conditions for it for the starting system of ordinary differential equations. If 
the solution is constructed, passing consecutively through the zones 1-3-2, the boundary 
conditions assume the form 

- -  2 �9 n (4)n (4)'~ _(a) (1) CaG[ 1 (kSij + ~ i J 1, (2 .8)  u~j = Oi. i 
v~3) ( 1 ) - - -  {4} ~{a) ~(3) 

~ v i  -t-~ani , = ii = 0 ,  

where  v~ ~)" a r e  c a l c u l a t e d  f rom t h e  e l a s t i c  s o l u t i o n  o f  t h e  p rob lem,  and 4,  f rom ( 2 . 7 ) .  

I f  t he  s o l u t i o n  i s  c o n s t r u c t e d ,  p a s s i n g  s u c c e s s i v e l y  t h rough  zones 2 - 3 - 1 ,  t h e  boundary  
c o n d i t i o n s  assume t h e  form 

o~j = u~j - -  %G~ ~ + vi = v~ + %n~ 3), • = 

where  v i  (a) a r e  d e t e r m i n e d  f rom t h e  e l a s t i c  s o l u t i o n  of  t h e  p rob lem,  and ~a f rom ( 2 . 7 ) .  In  
what follows, for definiteness, the first scheme will be used for construction of the solu- 
tion. 

We introduce dimensionless quantities, using the relationships 

vi  ---- ((~ + 2~t) pk-~)~/~vi, ( 2 . 9 )  

using which we write the starting system of equations and boundary conditions (2.8). Then, 
the system of eleven ordinary differential equations with the boundary condition 

( 2 . 1 0 )  
v~a) V~l)..~_ 3 l " v (  g 4 ) )  

can be solved numerically using one of the known methods, for example, ~he Runge--Kutta method 
(~ is the Poisson coefficient). In this case, the above system of equations can be brought 
into the form necessary for application of this method. We note first of all that the 

equality M > 0, which expresses the condition of the positive character of the rate of dis- 
sipation of mechanical energy with plastic deformation of the medium now goes over into the 
following: M' > 0, in the upper half-plane (y > 0) and ~' < 0 at the lower surface (y < 0). 
Since the system of equations is linear and hom0geneous with__respect ~o the derivatives, it 
is satisfied by the following values: ~'ij ~ e--P'ij = v'ij = M' = 0, which contradicts the 
above inequalities. From this it follows unat the determinant of the system in the plastic 
regions should revert to zero. By virtue of this, only ten equations of the system are 

! ! ! 
independent. Since M ~ 0, all =he quantities ~ iJ, eP iJ, v i can be expressed in terms 
of the value of M', for which there is a certain freedom of choice. Due to this, the above 
system of ordinary differential equations will have a nonsingular solution. Therefore, we 
shall regard ~he sought solution as limiting for a medium with hardening, where the param- 
eters of the hardening tend toward zero. 

3. Construction of an Elastoplastic Solution in a Medium with Hardening. The system 
of determining equations consists of the first two relationships (2.4) and the equations [6] 

e ~ = (S i )  - -  qe~i) "z, (Si~ --  qe~i) ( "Sij - -  q'e p`~) 

= 2r (k -F r• • 
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where r > 0, q > 0 are the parameters of the hardening of the material. It is assumed that 
there are two hardening mechanisms: kinematic and isotropic. The form of the loading sur- 
face is determined by multiplication of the first relationship of (3.1) by itself; we have 
(Sij -- qeP ij)(sij -- qePiJ) = 2(k + rM) 2. The second relationship of (3.1) was obtained by 
differentiation of the loading surface with respect to the time. Using (2.9), the sought 
system of equations for the variable @ assumes the form 

~i + ~sin=--~(l v)-Ictg~.sin~ + V2e~; = 0, 
r -p -p 

~1,  -5 s in  a (1 - -  2v)(2 ( i  - -  v)) -~ (v ,  - -  c tg  r  v l ) / -  V 2  ~ = O, 
--t --t , - - e  - p t  

o~2+~ 0--~) -I sin=.v~--ctg ~.sln~.v~+~e~=O, 

+ = .  ( i .  - = o ,  

- '  - -  = - '  . ~ ) s i n ~  - - '  O, (~xl  - -  c tg  ~ .~1~)  s in  ~ + v~ O, (~1~ - -  c t g  ~ + v~ = 
(3.2) 

o,  ( i  q- ( a - -  q) x) elx - -  = 

+ - q)  - = o ,  

- "  o ,  ( i  + ( a - - q ) u ) e ~ - -  - -  = 

- �9 - ,  _ . _ , ,  
F - q  ,~)  (S~ i  - - V ~ 2 q e i i )  - -  2 ( a  - -  q ) ( t  + ( a  - -  q) u) n '  = O, 

m 

where ~ = (q + /2r)(2~) -x ~ 0, q = q(2~) -~. We note that, with a = 0, the system (3.2) 
determines the stress--deformatlon state of the medium in the plastic regions of zone 3 in 
the case of an ideal elastoplastlc material. 

Thus, we arrive at the Cauchy problem (2.10), (3.2), which must be solved numerically 
in a digital computer with determined values of ~, q, ~, v, z,, z=. Here, the unknown 
boundary u,, at which the conditions (2.10) are given, is found from (2.3) taking account of 
(2.5), (2.8), (2.9). However, the relationships (2.5) related to the case of an ideal elasto- 
plastic material; here it is somewhat modified: instead of k s we must write ka(~+ i). The 
sign in (2.5) is selected taking account of the fact that ~ is referred to the third zone. 
It can be shown that, for given values of the initial parameters of several values of ez 
this condition is satisfied. Then, each of the roots is verified by numerical integration of 
system (3.2). Here the initial parameters must satisfy inequality (2.2) from which, speclf- 
Ically, it follows that ~ s ~/4. In each stage of the integration, the condition of a posi- 
tive character of the rate of dissipation of energy must be verified. The integration is 
carried until the first condition of (2.6), written in dimensionless form, is satisfied, 
where m = 3. Then we seek the value of ~a (weak loading wave) for which this condition is 
satisfied, after which the rate of propagation of this wave can be found from the relation- 
ship ca sin ~ = G~ sin ca. We note that, in the present solution, no account was taken of 
the possibility of the formation of plastic shock waves, for which [ePij] # 0. We note also 
[4, 5] that, for such problems, there are still no general theorems of w There- 
fore, for the solution obtained here, singularity can be shown only with a careful numerical 
investigation of all the possible solutions, with different values of the parameters: G, q, 
G, M, Zl, Za. 

For numerical integration of the system of equations (3.2) by the Runge--Kutta method, 
the sought quantities ~'lj, ~'Pi~' ~'i were expressed in terms of ~'. Since the determinant 
of the system (3.2) is equal to ~ero everywhere in the plastic region, it can be differen- 
tiated with respect to ~, and a linear _expression ~ith respect to the derivatives can be ob- 
tained, from which we determine~' = f(oij , ePij , M, a, q, v, u, ~). 

For different combinations of the initial parameters, a table of values of u~ was ob- 
tained, after which the system of equations (3.2) was integrated with a spacing A~ = 0.01 for 
each of these values. From an analysis of the results of the numerical calculations it fol- 
lows, specifically, that the span ~f the plastic fan Au = Ca -- ~ is constructed with an in- 
crease in the hardening parameter ~, independently of v, a, zl, z~. As an illustration, 
Fig. 2 gives dependences A~(~) forz: = za = 0.8, v = 0.3, q = 0, and for a = 0.52, 0.44, 
0.35, 0.26 (angles in radlans, curves 1-4, respectively). Here, in all the calculatlons, in 
relationship (2.5) a -- sign was taken; a + sign gives value of u, = a, which is impossible. 
In the case of an ideal elasticoplastic material (~= 0), the calculations were made for the 
values z, = z, = i, v - 0.25, a = ~/4. In this case boundary conditions (2.10) have the 
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f o l l o w i n g  va lues :  ~ , ,  = ~a ,  ffi 3 .46,  ~ , ,  ffi ~ ,  = e~j  ffi ~ = O, o'-3, = 1 .73,  ~ ,  = --3.675, ~ = 
2.77. The results of numerical calculations for some of sought quantities, characterizing 
the change in the stress--deformation state of t~e medium in the plastic fan of the third 
zone, are shown in Fig. 3 (from top to bottom: o,2, oi,, ~P3~, ~PI,, ~,). Here, ~2 = 3.51, 
i.e., as was to be expected, the plastic region is disposed symmetrically with relation to 
the negative x axis. In a more general case (z, # z2), it can lie as close as desired to 
this axis. 
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